polar coordinates - définition. Qu'est-ce que polar coordinates
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est polar coordinates - définition

TWO-DIMENSIONAL COORDINATE SYSTEM WHERE EACH POINT IS DETERMINED BY A DISTANCE FROM REFERENCE POINT AND AN ANGLE FROM A REFERENCE DIRECTION
Polar coordinates; Polar coordinate; Polar graph; Radial distance (geometry); Polar geometry; Circular coordinates; Polar co-ordinates; Polar Cordinates; Polar equation; Circular coordinate system; Polar graphs; Polar Equation; Polar plot; Polar plane; Polar Coordinates; Polar coords; Polar coordinate systems; Polar coordinates system; Polar graphing; Polar Angle; Polar system; Radial distance; Centrifugal force (polar); Polar distance (geometry); Polar coordinate plane; Polar degree; Polar coord; Radial coordinate; Plane polar coordinates; Polar integration; Radial (geometry); 2D polar angle; Polar form of a complex number; Polar function
  • A curve on the Cartesian plane can be mapped into polar coordinates. In this animation, <math>y = \sin (6x) + 2</math> is mapped onto <math>r = \sin (6 \theta) + 2</math>. Click on image for details.
  • Hipparchus
  • A [[planimeter]], which mechanically computes polar integrals
  • 0 < ''φ'' < 6''π''pi}}

polar coordinates         
¦ plural noun Geometry a pair of positional coordinates representing respectively the length of the straight line connecting a given point to the origin and the angle made by this line with a fixed line.
Log-polar coordinates         
  • Part of a Mandelbrot fractal showing spiral behaviour
2D COORDINATE SYSTEM, WHOSE 2 COORDINATES ARE THE LOGARITHM OF THE DISTANCE TO A CERTAIN POINT AND AN ANGLE
In mathematics, log-polar coordinates (or logarithmic polar coordinates) is a coordinate system in two dimensions, where a point is identified by two numbers, one for the logarithm of the distance to a certain point, and one for an angle. Log-polar coordinates are closely connected to polar coordinates, which are usually used to describe domains in the plane with some sort of rotational symmetry.
Homogeneous coordinates         
MATHEMATICS
Homogenous coordinates; Homogeneous coordinate; Homogeneous co-ordinates; Homogeneous coordinate system; Projective coordinates; Homogeneous Coordinates; Homogenous coordinate
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work ,August Ferdinand Möbius: Der barycentrische Calcul, Verlag von Johann Ambrosius Barth, Leipzig, 1827.

Wikipédia

Polar coordinate system

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian coordinate system) is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians (2π rad being equal to 360°).

Grégoire de Saint-Vincent and Bonaventura Cavalieri independently introduced the concepts in the mid-17th century, though the actual term "polar coordinates" has been attributed to Gregorio Fontana in the 18th century. The initial motivation for the introduction of the polar system was the study of circular and orbital motion.

Polar coordinates are most appropriate in any context where the phenomenon being considered is inherently tied to direction and length from a center point in a plane, such as spirals. Planar physical systems with bodies moving around a central point, or phenomena originating from a central point, are often simpler and more intuitive to model using polar coordinates.

The polar coordinate system is extended to three dimensions in two ways: the cylindrical and spherical coordinate systems.